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Abstract

Fuzzy sets are crucial for tackling the inherent vagueness and uncertainty encountered in assess-
ing parameters across various real-world applications, including project networks, transporta-
tion, and decision-making processes. While diverse types of fuzzy sets exist, trapezoidal and
triangular membership functions are widely adopted because they represent uncertain param-
eters, handle imprecise data, and simplify numerical computations. However, decision-makers
often face difficulties in differentiating between fuzzy numbers when the level of vagueness is
low. Research has revealed that the y-coordinate of a generalized trapezoidal fuzzy number’s
centroid may not always fall within the expected interval, despite residing within the range[
1

3
,
1

2

]
. Many existing ranking methods heavily rely on this centroid’s y−coordinate, especially

when x−coordinate-based ranking proves ineffective. These observations underscore the signif-

icance of acknowledging the inherent vagueness within the interval
[
1

3
,
1

2

]
during the ranking

of fuzzy numbers. This paper introduces an approximation operator designed to address these
challenges. This operator transforms a trapezoidal fuzzy number into the nearest triangular

fuzzy quantity, considering the vagueness at lower decision levelswithin the range
[
1

3
,
1

2

]
rather

than the conventional [0, 1]. This approximation is grounded in a defuzzification technique that
utilizes the metric distance between fuzzy numbers. The concepts of value and ambiguity are
introduced to derive a crisp value for ranking fuzzy numbers. Furthermore, the properties of the
proposed nearest triangular fuzzy quantity operator are explored, and a comparative analysis
with existing methods is conducted to validate its effectiveness.
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level; metric distance; value; ambiguity; ranking.

https://mjms.upm.edu.my
https://orcid.org/0000-0003-1444-537X
https://orcid.org/0000-0002-6646-4751


P. B. R. Peddi and L. Abdullah Malaysian J. Math. Sci. 19(2): 727–748(2025) 727 - 748

1 Introduction

Fuzzy sets, introduced by Zadeh [41] as an extension of crisp sets, have found widespread ap-
plication, with fuzzy numbers being a prominent special case. While various types of fuzzy sets
exist, practical evaluations often rely on expert approximations when precise values are unattain-
able or unnecessary. Trapezoidal and triangular membership functions are particularly favored
due to their effectiveness in representing uncertain parameters, handling imprecise data, and sim-
plifying numerical computations. Researchers widely acknowledge the ability of Fuzzy Numbers
(FNs) to effectively address vagueness in parameter assessments. However, in certain applica-
tions such as project networks and transportation problems, where activity times and costs are
represented by different fuzzy number types (e.g., trapezoidal and triangular), the concept of a
fuzzy sum between them can seem illogical. Therefore, approximating a Trapezoidal FuzzyNum-
ber (TrFN) into the nearest Triangular Fuzzy Quantity (TFQ) is crucial. This approximation al-
lows for substituting the TrFN with the resulting TFQ, enabling meaningful fuzzy sum and fuzzy
difference operations. These operations can be effectively utilized in real-world applications and
various decision-making scenarios.

Approximating general fuzzy numbers (FNs) with specific types of FNs, such as triangular
or trapezoidal, is primarily driven by the need for computational simplicity. However, it’s crucial
that these approximations maintain certain key attributes of the original FN. Consequently, many
researchers have explored FN approximations that preserve specific (linear) operators. These
are referred to as approximations preserving (linear) operators. A significant body of literature
focuses on determining the nearest triangular and trapezoidal approximations of FNs while en-
suring the preservation of specific properties of the original fuzzy number. Some of the works
are the nearest symmetric triangular defuzzification of a fuzzy number [26], the interval approx-
imation of fuzzy number preserving width [10], the nearest interval approximation of a fuzzy
number [19], trapezoidal approximation using the metric distance between two fuzzy numbers
[1] and the nearest trapezoidal approximation of fuzzy number preserving expected interval [20].
Though everymethod has its own pros and cons, somemethods are counterintuitive, and formost
of the above approximation methods, Allahviranloo and Firozja [2] gave some examples to prove
that the nearest trapezoidal approximation is incorrect. Further, they proved that the method pro-
posed by Grzegorzewski and Mrówka [20] is not always trapezoidal. Therefore, Grzegorzewski
and Mrówka [21] improved their previously proposed approximation operator.

Other works can be found in Yeh [37], some generalized and new properties of the trapezoidal
approximations of fuzzy numbers. Zeng andLi’s [42]weighted triangular approximation of fuzzy
numbers. Ban [3] completely solved the nearest approximation of trapezoidal fuzzy number pre-
serving the expected interval. Yeh [38] pointed out that the weighted triangular approximation
of fuzzy numbers proposed by Zeng and Li [42] is incorrect and suggest a corrected approach
for the method. Ban [4, 5] identified that many approximations proposed by researchers do not
produce fuzzy numbers or even fuzzy sets and corrected the previous versions. Further, Ban et al.
[6] approximated fuzzy numbers by trapezoidal fuzzy numbers preserving value and ambiguity,
Ban and Coroianu [7] came up with the nearest interval, triangular and trapezoidal approxima-
tion of a fuzzy number preserving ambiguity. Li et al. [25] proposed triangular approximation
preserving the centroid of fuzzy numbers. Ban et al. [8] proved that not all (linear) operators
can be preserved by trapezoidal approximations of FNs, and presented a necessary and sufficient
condition of linear operators for such approximation. Yeh [39] presented necessary and sufficient
conditions of linear operators, which are preserved by interval, triangular, symmetric triangular,
trapezoidal, or symmetric trapezoidal approximations of FNs, and Lakshamana et al. [24] pre-
sented triangular approximation of intuitionistic fuzzy numbers onmulti-criteria decision-making
problem.
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If we associate a real number with an FN, we say we have found a defuzzified value for an FN.
The defuzzification problem is mainly studied to acquire a representative value from a given FN
corresponding to some given properties, such as central value, median, etc., to replace FN with a
suitable crisp value. This crisp value is used to define ranking procedures. Through defuzzifica-
tion, we prematurely collapse fuzzy information into a single value, which risks discarding crucial
insights. Triangular approximation allows us to work with more accurate data within calculable
bounds, preventing the information loss inherent in defuzzification. Instead of having complex
Membership Functions (MFs) requiring intuitive interpretations, simple membership functions
like trapezoidal and triangular offer a powerful alternative, and their straightforward manipula-
tions make them highly practical for real-world applications.

Chen and Chen [11] demonstrated that the y-coordinate of the centroid of a generalized trape-
zoidal fuzzy numbermay not always lie within the interval [0, 1] of the fuzzy number, even though

it lies within the interval
[
1

3
,
1

2

]
. Many existing ranking methods rely on the y−coordinate of the

centroid, particularly when ranking based on the x−coordinate fails. These observations high-

light the importance of considering the vagueness set
[
1

3
,
1

2

]
in ranking fuzzy numbers. This

work primarily aims to approximate a TrFN to the nearest TFQ. This approximation is achieved
through a linear operator that preserves the triangular approximation of the FNwhile incorporat-

ing vaguenesswithin the interval
[
1

3
,
1

2

]
. A defuzzification technique utilizing themetric distance

between two FNs is employed to accomplish this. Furthermore, we propose a novel methodology
for ranking FNs. This method involves determining a crisp representative value for each FN by
considering its ’value’ (Val) and ’ambiguity’ (Amb). These values are derived from the TFQwith

vagueness within the interval
[
1

3
,
1

2

]
. A key advantage of this approach is that it avoids using any

reduction function to diminish the impact of lower decision levels. The proposed approach effec-
tively addresses the challenge of ranking different types of FNs and can be valuable for decision-
makers working on real-time problems, particularly those involving lower decision levels, and at
the same time, preserving triangular approximation.

The rest of the paper is organized as follows: Section 2 presents the basic definitions required
for the study. The proposed defuzzification technique for finding the nearest TFQ to the TrFN us-
ing the metric distance between FNs is presented in Section 3. Section 4 discusses some properties
of the TFQ operator and ranking function using Val and Amb, and Section 5 discusses the com-
parative study of the proposed ranking approach with some existing methods in the literature.
The conclusions of this study are presented in Section 6, and the limitations and future directions
of the study are presented in Subsection 6.1.

2 Preliminaries [18]

Definition 2.1. FN Ḡ = (p1, p2, p3, p4), shown in Figure 1, is a fuzzy subset of the real line R with MF
fḠ : R → [0, 1] satisfying the following,

1. fḠ is continuous from R to [0, 1].

2. fL
Ḡ
is strictly increasing on [p1, p2].

3. fḠ(x) = 1, for all x ∈ [p2, p3].
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4. fR
Ḡ

is strictly decreasing on [p3, p4].

5. fḠ(x) = 0, otherwise.

Figure 1: Fuzzy Number (FN).

The MF of fḠ is

fḠ =


fL
Ḡ
(x), p1 ≤ x ≤ p2,

1, p2 ≤ x ≤ p3,

fR
Ḡ
(x), p3 ≤ x ≤ p4,

0, otherwise.

where fL
Ḡ
: [p1, p2] → [0, 1], and fR

Ḡ
: [p3, p4] → [0, 1].

Definition 2.2. The r−cut of an FN S is defined as Sr = {x ∈ R/fS(x) ≥ r}.

Definition 2.3. A FN S = (p1, p2, p3, p4) is trapezoidal if and only if its r-cuts are of the form,

[p1 + (p2 − p1)r, p4 − (p4 − p3)r],

where p1 ≤ p2 ≤ p3 ≤ p4 and p1, p2, p3, p4 ∈ R. If p2 = p3, then the TrFN is a TFN.

Definition 2.4. For two FNs P and Qwith r-cuts [PL(r), PU (r)]and[QL(r), QU (r)], the distance between
them is defined as,

D(P,Q) =

√∫ 1

0

(PL(r)−QL(r))2dr +

∫ 1

0

(PU (r)−QU (r))2dr.

Definition 2.5. [17] Delgado defined two parameters for representing FNs. The first one is called value,
a number associated with the ill-defined magnitude represented by the FN, and the second one is called
ambiguity, the measure of vagueness involved in assessing the value of the FN.

For a FN L̃ with r-cut representation [t∗(r), t̄
∗(r)], the Val and Amb are defined as,

V∆[L̃] =

∫ 1

0

Rf (r)[t̄
∗(r) + t∗(r)]dr,

A∆[L̃] =

∫ 1

0

Rf (r)[t̄
∗(r)− t∗(r)]dr.

Here Rf (r) is reducing function from [0, 1] to [0, 1] with properties, Rf (0) = 0 and Rf (1) = 1.
Therefore, for a TrFN, L̃ = (a, b, c, d), the Val and Amb are given by,

V∆[L̃] =
a+ 2b+ 2c+ d

6
and A∆[L̃] =

d− 2b+ 2c− a

6
.
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Definition 2.6. Any non-normal and non-convex fuzzy set is defined as a fuzzy quantity. This is, in
general, a union of two or more generalized FNs.

3 Proposed Method on Finding Nearest TFQ to TrFN

This section presents a method for finding the nearest TFQ to the given TrFN using the metric

distance of two FNs. This nearest TFQ will be evaluated in the interval
[
1

3
,
1

2

]
. Let f = (a, b, c, d)

be a TrFN, and (f(λ), f̄(λ)) be its PF, and let R = (x0 − α, x0, x0 + β) be the TFN with MF R(x)
defined by,

R(x) =



x− x0 + α

α
, if x0 − α ≤ x ≤ x0,

1, if x = x0,

x0 + β − x

β
, if x0 ≤ x ≤ x0 + β,

0, otherwise.

(1)

By using (1), the PF of TFN is expressed as,

R(λ) = x0 − α+ αλ, R̄(λ) = x0 + β − βλ. (2)

To obtain the nearest TFQ Q(x0 − α, x0, x0 + β) in the decision level λ ∈
[
1

3
,
1

2

]
, which is nearer

to f , we minimize,

D(f,R) =

∫ 1
2

1
3

[
f(λ)−R(λ)

]2
dλ+

∫ 1
2

1
3

[
f̄(λ)− R̄(λ)

]2
dλ, (3)

with respect to x0, α and β.

By using (2), the required distance becomes,

D =

∫ 1
2

1
3

[
f(λ)− x0 + α− αλ

]2
dλ+

∫ 1
2

1
3

[
f̄(λ)− x0 − β + βλ

]2
dλ. (4)

To minimize (4), the necessary conditions are the partial derivatives ∂D

∂x0
, ∂D

∂α
and ∂D

∂β
exists.

Therefore,

∂D

∂x0
= −2

∫ 1
2

1
3

[
f(λ)− x0 + α− αλ

]
dλ− 2

∫ 1
2

1
3

[
f̄(λ)− x0 − β + βλ

]
dλ

= −2

∫ 1
2

1
3

[
(f(λ) + f̄(λ))− 2x0 + (α− β)(1− λ)

]
dλ,

(5)

∂D

∂α
= 2

∫ 1
2

1
3

[
f(λ)− x0 + α− αλ

]
(1− λ)dλ, (6)

∂D

∂β
= 2

∫ 1
2

1
3

[
f̄(λ)− x0 − β + βλ

]
(λ− 1)dλ. (7)
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To get the stationary values x0, α, β, the necessary conditions are equated to zero,

i.e. ∂D

∂x0
= 0,

∂D

∂α
= 0 and ∂D

∂β
= 0. (8)

Making use of (8) and solving (5), (6), and (7), we get

x0 =

∫ 1
2

1
3

[756λ− 312]
[
f(λ) + f̄(λ)

]
dλ, (9)

α =
1

37

[∫ 1
2

1
3

[
(47628λ− 27972)f̄(λ)− (48276λ+ 20304)f(λ)

]
dλ

]
, (10)

β =
1

37

[∫ 1
2

1
3

[
(20304− 48276λ)f̄(λ) + (19656− 47628λ)f(λ)

]
dλ

]
. (11)

Now, the TrFN f = (a, b, c, d) in its PF is defined as f = (f(λ), f̄(λ)), therefore,

(f(λ), f̄(λ)) = (a+ (b− a)λ, d− (d− c)λ). (12)

Then, ∫ 1
2

1
3

[
f(λ) + f̄(λ)

]
dλ =

∫ 1
2

1
3

[(a+ d) + (b− a− d+ c)λ] dλ =
7a+ 5b+ 5c+ 7d

72
, (13)

∫ 1
2

1
3

λf̄(λ)dλ =

∫ 1
2

1
3

λ [d− (d− c)λ] dλ =
19c+ 26d

648
, (14)

∫ 1
2

1
3

λf(λ)dλ =

∫ 1
2

1
3

λ [a+ (b− a)λ] dλ =
26a+ 19b

648
. (15)

Using the values of (13), (14), (15) in (9), (10) and (11), we get x0, α and β as,

x0 =
b+ c

2
, α =

−74a+ 11b+ 63c

74
, β =

−63b− 11c+ 74d

74
.

Therefore, for the TrFN f = (a, b, c, d), the nearest TFQ with respect to the metric distance D

defined by the (4) in the interval
[
1

3
,
1

2

]
is given by,

f(a, b, c, d) = Q(x0 − α, x0, x0 + β) =

[
a+

13

17
(b− c),

b+ c

2
, d+

13

37
(c− b)

]
. (16)

The MF of the nearest TFQ, shown in Figure 2, is defined as,

Q(x) =



3α+ x− x0

6α
, if x0 − α ≤ x ≤ x0,

1

2
, if x = x0,

3β − x+ x0

6β
, if x0 ≤ x ≤ x0 + β,

0, otherwise.

(17)

732



P. B. R. Peddi and L. Abdullah Malaysian J. Math. Sci. 19(2): 727–748(2025) 727 - 748

Figure 2: Nearest extended TFQ to TrFN.

By using the (17), the PF of TFQ is written as,

Q(q) = x0 − 3α(1− 2q), Q̄(q) = x0 + 3β(1− 2q). (18)

The Val of the TFQ, Q(x0 − α, x0, x0 + β) in the decision level q ∈
[
1

3
,
1

2

]
is defined through the

PF of TFQ, given by (18) as,

V al(Q) =

∫ 1
2

1
3

[
Q̄(q) +Q(q)

]
dq =

1

12
[2(x0 + y0)− (α− β)] . (19)

Therefore, using the above (19), we can define the Val of TrFN f = (a, b, c, d) in decision-level[
1

3
,
1

2

]
as,

V al(f) =
1

12
(a+ b+ c+ d). (20)

The Amb of TFQ, Q(x0 − α, x0, x0 + β) in the decision level q ∈
[
1

3
,
1

2

]
is defined through the PF

of TFQ, given by (18) as,

Amb(Q) =

∫ 1
2

1
3

[
Q̄(q)−Q(q)

]
dq =

1

444
[63(y0 − x0) + 37(α+ β)] . (21)

Therefore, by using the above (21), we can define the Amb of TrFN f = (a, b, c, d) in decision-level[
1

3
,
1

2

]
as,

Amb(f) =
1

444
[37(d− a) + 26(c− b)]. (22)

3.1 Ranking criterion for FNs

If θ1 = (a1, b1, c1, d1) and θ2 = (a2, b2, c2, d2) are two TrFNs, then the following decisions are
made,
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1. If V al(θ1) > V al(θ2), then θ1 ≻ θ2.

2. If V al(θ1) < V al(θ2), then θ1 ≺ θ2.

3. If V al(θ1) = V al(θ2), then,

(a) if Amb(θ1) > Amb(θ2), then θ1 ≺ θ2.
(b) if Amb(θ1) < Amb(θ2), then θ1 ≻ θ2.
(c) if Amb(θ1) = Amb(θ2).

Then, the following decisions are to be utilized:

If Amb(θ1) = Amb(θ2), the ranking is achieved using a mode with a decision-maker optimism
index to rank the FNs (Rao and Shankar [31]).

For any TrFN θ = (a, b, c, d), the mode is defined as,

M =
b+ c

2
. (23)

For TrFNs with the same Amb, the ranking value is defined as,

Ir(θ) =
r

2
(b+ c) + r(Amb) + (1− r)V al, (24)

where r is decision-maker intensity of optimism and 0 ≤ r ≤ 1.

4 Properties of Triangular Approximation Operator

The triangle approximation operator of the TrFN Q = (a, b, c, d) i.e.,

Q(a, b, c, d) =

(
a+

13

37
(b− c),

b+ c

2
, d+

13

37
(c− b)

)
,

satisfies the following properties,

Proposition 4.1. OperatorQ is scale invariant, i.e.,Q(ka, kb, kc, kd) = kQ(a, b, c, d), where k is a scalar.

Proof.

Case (i): Let k > 0 and θ = (a, b, c, d), then,

Q(kθ) = Q(ka, kb, kc, kd)

=

(
ka+

13

37
(kb− kc),

kb+ kc

2
, kd+

13

37
(kc− kb)

)
= k

(
a+

13

37
(b− c),

b+ c

2
, d+

13

37
(c− b)

)
= kQ(a, b, c, d).
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Case (ii): Let k < 0 and p = −k, therefore p > 0, then,

Q(pθ) = Q(pa, pb, pc, pd)

=

(
pa+

13

37
(pb− pc),

pb+ pc

2
, pd+

13

37
(pc− pb)

)
= p

(
a+

13

37
(b− c),

b+ c

2
, d+

13

37
(c− b)

)
= pQ(a, b, c, d).

Case (iii): Let k = 0, then,

Q(0θ) = Q(0a, 0b, 0c, 0d)

=

(
0a+

13

37
(0b− 0c),

0b+ 0c

2
, 0d+

13

37
(0c− 0b)

)
= 0

(
a+

13

37
(b− c),

b+ c

2
, d+

13

37
(c− b)

)
= 0Q(a, b, c, d)

=⇒ Q(ka, kb, kc, kd) = kQ(a, b, c, d).

Proposition 4.2. Operator Q is translation invariant, i.e. Q(k + θ) = k +Q(θ), where k is a scalar.

Proof. If θ = (a, b, c, d), then,

Q(k + θ) =

(
k + a+

13

37
(b− c),

b+ c

2
, d+

13

37
(c− b)

)
= k +

(
a+

13

37
(b− c),

b+ c

2
, d+

13

37
(c− b)

)
= k +Q(a, b, c, d)

= k +Q(θ).

Proposition 4.3. If θ1 = (a1, b1, c1, d1)andθ2 = (a2, b2, c2, d2) are two TrFNs, then,

Q(θ1 + θ2) = Q(θ1) +Q(θ2),

with respect to the nearest TFQ operator Q.

735



P. B. R. Peddi and L. Abdullah Malaysian J. Math. Sci. 19(2): 727–748(2025) 727 - 748

Proof.

Q(θ1 + θ2) = Q(a1 + a2, b1 + b2, c1 + c2, d1 + d2)

=

[
a1 + a2 +

13

37
(b1 + b2 − (c1 + c2)),

b1 + b2 + c1 + c2
2

,

d1 + d2 +
13

37
(c1 + c2 − (b1 + b2))

]
=

[
a1 +

13

37
(b1 − c1) + a2 +

13

37
(b2 − c2),

b1 + c1 + (b2 + c2)

2
,

d1 +
13

37
(c1 − b1) + d2 +

13

37
(c2 − b2)

]
= Q(θ1) +Q(θ2).

Proposition 4.4. Operator Q satisfies the identity property, i.e. if θ = (a, b, d) is a TFN, then
Q(a, b, d) = (a, b, d).

Proof. If θ = (a, b, c, d), then,

Q(a, b, c, d) =

(
a+

13

37
(b− c),

b+ c

2
, d+

13

37
(c− b)

)
, and for b = c,

Q(a, b, d) =

(
a+

13

37
(b− b),

b+ b

2
, d+

13

37
(b− b)

)
= (a, b, d).

Proposition 4.5. If θ = (a, b, c, d) is a TrFN, then Q(−θ) = −Q(θ), with respect to the nearest TFQ
operator Q.

Proof. If θ = (a, b, c, d) then,

−θ = (−d,−c,−b,−a)

Q(−θ) = Q(−d,−c,−b,−a)

=

(
−d+

13

37
(−c+ b),

−c− b

2
,−a+

13

37
(−b+ c)

)
=

(
−
(
d+

13

37
(c− b)

)
,
−(b+ c)

2
,−

(
a+

13

37
(b− c)

))
= −Q(θ).

Proposition 4.6. If θ = (a, b, c, d) is a TrFN, then V al(kθ) = kV al(θ) for k ≥ 0, with respect to the
nearest TFQ operator.

Proof. Let θ = (a, b, c, d), then kθ = (ka, kb, kc, kd) for k ≥ 0. By using (20), we get

V al(kθ) =
ka+ kb+ kc+ kd

12
= k

(
a+ b+ c+ d

12

)
= kV al(θ).
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Proposition 4.7. If θ = (a, b, c, d) is a TrFN, then V al(kθ) = −kV al(θ) for k < 0, with respect to the
nearest TFQ operator.

Proof. Let θ = (a, b, c, d), and let k = −p where p > 0. Then, by Proposition 4.6,

V al(pθ) = pV al(θ) =⇒ V al(−kθ) = −kV al(θ),

since p = −k.

Proposition 4.8. If θ = (a, b, c, d) and δ = (p, q, r, s) are two TrFNs, then,

V al(θ + δ) = V al(θ) + V al(δ),

with respect to the nearest TFQ operator.

Proof. Given θ = (a, b, c, d) and δ = (p, q, r, s), then θ+ δ = (a+p, b+ q, c+ r, d+ s). By using (20),
we get

V al(θ + δ) =
a+ p+ b+ q + c+ r + d+ s

12
=

a+ b+ c+ d

12
+

p+ q + r + s

12
= V al(θ) + V al(δ).

Proposition 4.9. If θ = (a, b, c, d) and δ = (p, q, r, s) are two TrFNs, then,

V al(θ − δ) = V al(θ)− V al(δ),

with respect to the nearest TFQ operator.

Proof. This is a direct consequence of Proposition 4.7 and Proposition 4.8.

V al(θ − δ) = V al[θ + (−δ)] = V al(θ) + V al(−δ) = V al(θ)− V al(δ).

Proposition 4.10. If θ = (a, b, c, d) is a TrFN, thenAmb(−θ) = Amb(θ), with respect to the nearest TFQ
operator.

Proof. Let θ = (a, b, c, d), then −θ = (−d,−c,−b,−a). By using (22), we get

Amb(−θ) =
37(−a+ d) + 26(−b+ c)

444
= Amb(θ).

Proposition 4.11. If θ = (a, b, c, d) and δ = (p, q, r, s) are two TrFNs, then,

Amb(θ + δ) = Amb(θ) +Amb(δ),

with respect to the nearest TFQ operator.
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Proof. Given θ = (a, b, c, d) and δ = (p, q, r, s), then θ+ δ = (a+p, b+ q, c+ r, d+ s). By using (22),
we get

Amb(θ + δ) =
37(d+ s− a− p) + 26(c+ r − b− q)

444

=
37(d− a) + 26(c− b)

444
+

37(s− p) + 26(r − q)

444
= Amb(θ) +Amb(δ).

Proposition 4.12. θ = (a, b, c, d) and δ = (p, q, r, s) are two TrFNs, then,

Amb(θ − δ) = Amb(θ) +Amb(δ),

with respect to the nearest TFQ operator.

Proof. This is a direct consequence of Proposition 4.10 and Proposition 4.11.

Amb(θ − δ) = Amb[θ + (−δ)] = Amb(θ) +Amb(−δ) = Amb(θ) +Amb(δ).

Proposition 4.13. If θ = (a, b, d) is a TFN, then V al(kθ) = kV al(θ) for k ∈ R, under the nearest
extended TFQ operator, which is an identity operator.

Proof. The proof is a consequence of Proposition 4.6 and Proposition 4.7 by putting c = b.

Proposition 4.14. If θ = (a, b, d) and δ = (p, q, s) are two TFNs, then,

V al(θ ± δ) = V al(θ)± V al(δ),

under the nearest extended TFQ operator, which is an identity operator.

Proof. The proof is a consequence of Proposition 4.8 and Proposition 4.9 by putting c = b and r = s
respectively.

Proposition 4.15. If θ = (a, b, d) is a TFN, then Amb(−θ) = Amb(θ) under the nearest extended TFQ
operator, which is an identity operator.

Proof. The proof is a consequence of Proposition 4.10, by putting c = b.

Proposition 4.16. If θ = (a, b, d) and δ = (p, q, s) are two TFNs, then,

Amb(θ ± δ) = Amb(θ) +Amb(δ),

under the nearest extended TFQ operator, which is an identity operator.

Proof. The proof is a consequence of Proposition 4.11 and Proposition 4.12 by putting c = b and
r = s respectively.
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5 Comparative Study

In this section, a relative study of the proposedmethod is carried outwith ten existingmethods
in literature Chu and Tsao [15], Wang et al. [34], Chen and Sanguansat [12], Chen and Chen [13],
Chen et al. [14], Nasseri et al. [29], Rezvani [32], Yager [35], Shureshjani and Darehmiraki [33],
and Rituparna and Bijit [16] using very critical numerical examples cited from various studies.
The results are consolidated in Tables 1, 2, and 3.

Case I: Consider three sets of FNs taken from Yao and Wu [36], shown in Figure 3, and Table
1 summarizes the findings,

Set 1: θ1 = (0.0, 0.4, 0.7, 0.8; 1.0), θ2 = (0.2, 0.5, 0.9; 1.0), θ3 = (0.1, 0.6, 0.8; 1.0)

Set 2: θ1 = (0.3, 0.4, 0.7, 0.9; 1.0), θ2 = (0.3, 0.7, 0.9; 1.0), θ3 = (0.5, 0.7, 0.9; 1.0)

Set 3: θ1 = (0.3, 0.5, 0.7; 1.0), θ2 = (0.3, 0.5, 0.9; 1.0), θ3 = (0.3, 0.5, 0.8, 0.9; 1.0)

Figure 3: Three sets of FNs - Yao and Wu [36].
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Table 1: Comparative study - three sets of FNs - Yao and Wu [36].

Method Set 1 Set 2 Set 3
θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Chu and Tsao
[15]

0.2440 0.2624 0.26219 0.2847 0.3248 0.3500 0.2500 0.2747 0.3152

Ranking order θ2 ≻ θ3 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

Wanget et al.
[34]

0.628 0.628 0.600 0.728 0.715 0.775 0.600 0.657 0.764

Ranking order θ2 ≻ θ1 ≻ θ3 θ3 ≻ θ1 ≻ θ2 θ3 ≻ θ2 ≻ θ1

Chen et al. [12] 0.4750 0.525 0.5250 0.5750 0.6500 0.7000 0.5000 0.5500 0.6250

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

Chen [13] 0.3494 0.4079 0.4043 0.4508 0.5193 0.6017 0.4298 0.4394 0.4901

Ranking order θ2 ≻ θ3 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

Chen et al. [14] 0.426 0.466 0.477 0.516 0.604 0.651 0.444 0.488 0.574

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

Nasseri et al. [29] 1.393 1.441 10.444 1.628 1.718 1.861 1.461 1.518 1.728

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

Rezvani [32] 0.0060 0.0973 0.0730 0.0524 0.1050 0.1269 0.0685 0.1050 0.0892

Ranking order θ2 ≻ θ3 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ3 ≻ θ1

Yager [35] 0.4636 0.5333 0.5000 0.5777 0.6333 0.7000 0.5000 0.5667 0.6222

Ranking order θ2 ≻ θ3 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

Shureshjani [33]
α = 0.1 0.8685 0.9405 0.9585 1.0305 1.1790 1.2600 0.9000 0.9810 1.1295

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1
α = 0.5 0.5125 0.5125 0.5625 0.5625 0.6750 0.7000 0.5000 0.5250 0.6375

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1
α = 0.8 0.2140 0.2020 0.2340 0.2220 0.2760 0.2800 0.2000 0.2040 0.2850

Ranking order θ3 ≻ θ1 ≻ θ2 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

Rituparna [16]
α = 0.1 0.4959 0.5112 0.5454 0.5607 0.6606 0.6390 0.4950 0.5274 0.6273

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1
α = 0.5 0.3875 0.3833 0.4250 0.4208 0.5083 0.5250 0.3750 0.3917 0.4792

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1
α = 0.8 0.1928 0.1817 0.2108 0.1997 0.2485 0.2520 0.1800 0.1835 0.2323

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

Proposed method

α ∈
[
1

3
,
1

2

]
0.396 0.3665 0.4166 0.196 0.216 0.2333 0.1666 0.1833 0.2083

Ranking order θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1

From Table 1, for Set 1, by using (20), we get, V al(θ1) = 0.0153, V al(θ2) = 0.175, and
V al(θ3) = 0.175. As, V al(θ1) = V al(θ2), the ranking is decided by using Amb′s. By
using (22), we get

Amb(θ1) = 0.0666, Amb(θ2) = 0.0583, and Amb(θ3) = 0.0583.

As, Amb(θ2) = Amb(θ3), the ranking is decided by using the mode, with a decision-
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maker optimism index.

By (24) for decision-maker optimism level, r = 0.5, we get

Ir(θ1) = 0.396, Ir(θ2) = 0.3666, and Ir(θ3) = 0.4166,

implying that the ranking order of given FNs is θ3 ≻ θ1 ≻ θ2.

The result is consistent with Chutia and Chutia [16] method for decision levels α = 0.5
and α = 0.8, and Shureshjani and Darehmiraki [33] method for decision level α = 0.8.
The method by Chen and Sanguansat [12] failed to discriminate between FNs θ2 and
θ3, and the methods proposed by Chu and Tsao [15], Wang et al. [34], Chen and Chen
[13], Rezvani [32], and Yager [35] preferred FN θ2 over θ3 though the core of θ3 is more
than the core of θ2. The methods proposed by Chen et al. [14] and Nasseri et al. [29]
preferred FN θ2 over θ1 though the core of θ1 is more than the core of θ2.

For Set 2, the ranking orders of FNs coincide with all other methods except the method
proposed byWang et al. [34]. This method preferred θ1 over θ2though the core of θ2 is
more than the core of θ1.

For Set 3, the ranking orders of FNs coincide with all other methods except the method
proposed by Rezvani [32]. This method preferred θ2 over θ3 though the core of θ3 is
more than that of θ2.

Case II: Consider three sets of FNs taken from Chen et al. [14], shown in Figure 4, and Table 2
summarizes the findings.

Set 1: θ1 = (−0.5,−0.3,−0.3,−0.1; 1.0), θ2 = (0.1, 0.3, 0.3, 0.5; 1.0)

Set 2: θ1 = (0.0, 0.4, 0.6, 0.8; 1.0), θ2 = (0.2, 0.5, 0.9; 1.0), θ3 = (0.1, 0.6, 0.7, 0.8; 1.0)

Set 3: θ1 = (0.1, 0.2, 0.4, 0.5; 1.0), θ2 = (1.0, 1.0, 1.0, 1.0; 1.0)

Figure 4: Three sets of FNs - Chen et al. [14].
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Table 2: Comparative study - three sets of FNs - Chen et al. [14].

Method Set 1 Set 2 Set 3
θ1 θ2 θ1 θ2 θ3 θ1 θ2

Chu and Tsao [15] −0.150 0.150 0.228 0.262 0.278 0.150 ###

Ranking order θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 ∗ ∗ ∗
Wang et al. [34] 0.4485 0.4485 0.5946 0.6289 0.6452 0.5362 ###

Ranking order θ1 ∼ θ2 θ3 ≻ θ2 ≻ θ1 ∗ ∗ ∗
Chen et al. [12] −0.3000 0.3000 0.4500 0.5250 0.5500 0.3000 1.0000

Ranking order θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1

Chen and Chen [13] −0.2570 0.2570 0.3354 0.4079 0.4196 0.2537 1.000

Ranking order θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1

Chen et al. [14] −0.2550 0.2550 0.4000 0.4666 0.5057 0.2553 1.0000

Ranking order θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1

Nasseri et al. [29] 0.1385 1.0615 1.3188 1.4413 1.5227 1.0900 2.5000

Ranking order θ2 ≻ θ1 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1

Rezvani [32] 0.0297 0.0297 0.0442 0.0973 0.0505 1.0072 ###

Ranking order θ2 ∼ θ1 θ2 ≻ θ3 ≻ θ1 ∗ ∗ ∗
Yager [35] −0.3000 0.3000 0.4400 0.5333 0.5250 0.3000 ###

Ranking order θ1 ≺ θ2 θ2 ≻ θ3 ≻ θ1 ∗ ∗ ∗
Shureshjani et al. [33]
α = 0.1 −0.5400 0.5400 0.8190 0.9405 1.0080 0.54001 1.8000

Ranking order θ1 ≺ θ2 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1
α = 0.5 −0.3000 0.3000 0.4750 0.5125 0.6000 0.3000 1.0000

Ranking order θ1 ≺ θ2 θ3 ≻ θ2 ≻ θ1 cθ2 ≻ θ1

α = 0.8 −0.1200 0.1200 0.1960 0.2020 0.2520 0.1200 0.3900

Ranking order θ1 ≺ θ2 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1

Rituparna et al. [16]
α = 0.1 −0.2970 0.2970 0.4626 0.5111 0.5787 0.2970 0.9900

Ranking order θ1 ≺ θ2 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1
α = 0.5 −0.2250 0.2250 0.3583 0.3833 0.4542 0.2250 0.7500

Ranking order θ1 ≺ θ2 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1
α = 0.8 −0.1080 0.1080 0.1765 0.1817 0.2271 0.1080 0.3600

Ranking order θ1 ≺ θ2 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1

Proposed method

α ∈
[
1

3
,
1

2

]
−0.1000 0.1000 0.0150 0.1750 0.1830 0.1000 0.3333

Ranking order θ1 ≺ θ2 θ3 ≻ θ2 ≻ θ1 θ2 ≻ θ1
###means that the method cannot calculate the ranking value of the FNs.

∗ ∗ ∗means the author’s method is unable to discriminate FNs.

From Table 2, for Set 1, the ranking order of FNs is consistent with methods proposed
by Chu and Tsao [15], Chen and Sanguansat [12], Chen and Chen [13], Chen et al.
[14], Shureshjani and Darehmiraki [33], and Rituparna and Bijit [16]. The approaches
of Wang et al. [34], and Rezvani [32] failed to discriminate FNs, and Nasseri et al. [29]
ranking order is illogical.
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From Table 2, for Set 2, the ordering of FNs by Rezvani [32] and Yager [35] is unreason-
able by intuition, and they preferred FN θ2 over the FN θ3 though the core ofθ2is less
than the core of θ3. The ordering of the FNs coincides with the rest of the methods.

From Table 2, for Set 3, it is obvious that by intuition, one must prefer the crisp number
θ2 over the FN θ1, and the ranking order should be θ2 ≻ θ1. The ranking value of the
crisp number was not calculated by the methods Wang et al. [34], Rezvani [32], Chu
and Tsao [15], and Yager [35], and ultimately these methods produced no order, and
the ordering of the FNs coincides with the rest of the methods.

Case III: Consider two sets of FNs taken from Bortolan and Degani [9], shown in Figure 5 and
Table 3 summarizes the findings,

Set 1: θ1 = (0.3, 0.4, 0.6, 0.7; 1.0), θ2 = (0.4, 0.5, 0.6; 1.0)

Set 2: θ1 = (0.4, 0.5, 1.0; 1.0), θ2 = (0.4, 0.7, 1.0; 1.0), θ3 = (0.4, 0.9, 1.0; 1.0)

Figure 5: Two sets of FNs - Bortolan and Degani [9].

From Table 3, for Set 1, the methods by Chu and Tsao [15], Chen and Sanguansat [12],
Chen et al. [14], Nasseri et al. [29], Yager [35], Shureshjani andDarehmiraki [33] failed
to discriminate the FNs, though θ1 is TrFN and θ2 is a TFN.

For the proposed method, by using (20), we get V al(θ1) = V al(θ2) = 0.1666. Hence,
the ranking order is decided using Amb′s. By using (22), we get Amb(θ1) = 0.045, and
Amb(θ1) = 0.0166. The lower the ambiguity value of an FN, the higher the preference
for an FN. As, Amb(θ1) > Amb(θ2), the ranking order is θ1 < θ2. This ordering coin-
cides with other methods listed in Table 3.

From Table 3, for Set 2, the ordering of the FNs by the proposed method coincides with
all othermethods, excluding themethod proposed by Rezvani [32], which failed to dis-
criminate FNs despite having different cores and not coinciding with human intuition.
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Table 3: Comparative study - two sets of FNs - Bortolan and Degani [9].

Method Set 1 Set 2
θ1 θ2 Ranking order θ1 θ2 θ3 Ranking order

Chu andTsao [15] 0.2500 0.2500 θ2 ∼ θ1 0.2990 0.3500 0.3990 θ1 ≺ θ2 ≺ θ3

Wang et al. [34] 0.6689 0.6009 θ1 ≺ θ2 0.7157 0.7753 0.8359 θ1 ≺ θ2 ≺ θ3

Chen et al. [12] 0.5000 0.5000 θ2 ∼ θ1 0.6000 0.7000 0.8000 θ1 ≺ θ2 ≺ θ3

Chen and Chen
[13]

0.4220 0.4620 θ1 ≺ θ2 0.4720 0.5620 0.6290 θ1 ≺ θ2 ≺ θ3

Chen et al. [14] 0.4444 0.4444 θ2 ∼ θ1 0.5333 0.6512 0.7805 θ1 ≺ θ2 ≺ θ3

Nasseri et al. [29] 1.4900 1.4900 θ2 ∼ θ1 1.6227 1.8174 2.0227 θ1 ≺ θ2 ≺ θ3

Rezvani [32] 0.0190 0.0620 θ1 ≺ θ2 0.1360 0.1360 0.1360 θ1 ∼ θ2 ∼ θ3

Yager [35] 0.5000 0.5000 θ2 ∼ θ1 0.6330 0.7000 0.7660 θ1 ≺ θ2 ≺ θ3

Shureshjani et al.
[33]
α = 0.1 0.9000 0.9000 θ2 ∼ θ1 1.0620 1.2600 1.4589 θ1 ≺ θ2 ≺ θ3

α = 0.5 0.5000 0.5000 θ2 ∼ θ1 0.5500 0.7000 0.8500 θ1 ≺ θ2 ≺ θ3

α = 0.8 0.1200 0.1200 θ2 ∼ θ1 0.2080 0.2800 0.3519 θ1 ≺ θ2 ≺ θ3

Rituparna et al.
[16]
α = 0.1 0.1314 0.0324 θ1 ≺ θ2 0.5598 0.6929 0.8262 θ1 ≺ θ2 ≺ θ3

α = 0.5 0.0917 0.0170 θ1 ≺ θ2 0.4083 0.5249 0.6416 θ1 ≺ θ2 ≺ θ3

α = 0.8 0.0395 0.0035 θ1 ≺ θ2 0.1869 0.2519 0.3170 θ1 ≺ θ2 ≺ θ3

Proposed method

α ∈
[
1

3
,
1

2

]
0.0450 0.0166 θ1 ≺ θ2 0.2000 0.2333 0.2666 θ1 ≺ θ2 ≺ θ3

6 Conclusions

Traditional defuzzification methods primarily use linear operators to approximate the TrFN to
the nearest TFN. However, some of these operators fail to preserve the triangular approximation.
In real-time fuzzy environments, decision-makers often require decisions with vagueness at lower

decision levels, specifically within the interval
[
1

3
,
1

2

]
. This allows them to effectively select the

best alternative from a set of options that inherently contain vagueness. This study introduces
an operator approximating a TrFN to the nearest TFQ with vagueness within the decision level[
1

3
,
1

2

]
. This approximation is achieved through a defuzzification technique that utilizes the met-

ric distance between fuzzy numbers. The proposed linear operator effectively preserves the trian-
gular approximation. To rank FNs and obtain a crisp representative value, we define ’value’ (Val)
and ’ambiguity’ (Amb) based on the derived TFQ. A novel ranking index, incorporating the FN
mode, is introduced to differentiate between FNswith identical Val andAmb. The proposed oper-
ator exhibits several crucial properties, including scale invariance, translation invariance, identity,
and the preservation of triangular approximation. A comparative analysis with other ranking
methods demonstrates the effectiveness of the proposed technique, particularly at lower decision
levels. This approximation operator has significant practical applications. For instance, in project
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network problems where both TrFNs and TFNs represent activity times, the operator can convert
TrFNs to TFQs within the lower decision levels. This enables the accurate execution of fuzzy sum
and fuzzy subtraction operations and facilitates the discrimination of FNswith vagueness at lower
decision levels.

6.1 Limitations and future directions

This study primarily focuses on traditional fuzzy sets, which exclusively consider the degree of
membership of an element. The degree of non-membership is not explicitly addressed, represent-
ing a limitation of this work. Future research could expand upon these findings by investigating
the necessary and sufficient conditions for triangular approximation of TrFNs within the context
of more sophisticated frameworks. These include bipolar complex fuzzy sets [28], bipolar com-
plex fuzzy N−soft sets [27], Dombi aggregation operators for bipolar complex fuzzy soft sets
[22], power Dombi aggregation operators for pythagorean fuzzy sets [23], aggregation operators
for complex picture fuzzy sets [43], interval type−2 pentagonal fuzzy numbers [30], and circular
q−rung orthopair fuzzy set [40]. The proposed ranking procedure can be adapted to accommo-
date other types of fuzzy sets that incorporate the degree of non-membership, such as intuitionistic
fuzzy sets and pythagorean fuzzy sets.
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